void Unpack::Unpack5(bool Solid)
{
  FileExtracted=true;
 
  if (!Suspended)
  {
    UnpInitData(Solid);
    if (!UnpReadBuf())
      return;
 
    // Check TablesRead5 to be sure that we read tables at least once
    // regardless of current block header TablePresent flag.
    // So we can safefly use these tables below.
    if (!ReadBlockHeader(Inp,BlockHeader) ||
        !ReadTables(Inp,BlockHeader,BlockTables) || !TablesRead5)
      return;
  }
 
  while (true)
  {
    UnpPtr&=MaxWinMask;
 
    if (Inp.InAddr>=ReadBorder)
    {
      bool FileDone=false;
 
      // We use 'while', because for empty block containing only Huffman table,
      // we'll be on the block border once again just after reading the table.
      while (Inp.InAddr>BlockHeader.BlockStart+BlockHeader.BlockSize-1 || 
             Inp.InAddr==BlockHeader.BlockStart+BlockHeader.BlockSize-1 && 
             Inp.InBit>=BlockHeader.BlockBitSize)
      {
        if (BlockHeader.LastBlockInFile)
        {
          FileDone=true;
          break;
        }
        if (!ReadBlockHeader(Inp,BlockHeader) || !ReadTables(Inp,BlockHeader,BlockTables))
          return;
      }
      if (FileDone || !UnpReadBuf())
        break;
    }
 
    if (((WriteBorder-UnpPtr) & MaxWinMask)<=MAX_INC_LZ_MATCH && WriteBorder!=UnpPtr)
    {
      UnpWriteBuf();
      if (WrittenFileSize>DestUnpSize)
        return;
      if (Suspended)
      {
        FileExtracted=false;
        return;
      }
    }
 
    uint MainSlot=DecodeNumber(Inp,&BlockTables.LD);
    if (MainSlot<256)
    {
      if (Fragmented)
        FragWindow[UnpPtr++]=(byte)MainSlot;
      else
        Window[UnpPtr++]=(byte)MainSlot;
      continue;
    }
    if (MainSlot>=262)
    {
      uint Length=SlotToLength(Inp,MainSlot-262);
 
      uint DBits,Distance=1,DistSlot=DecodeNumber(Inp,&BlockTables.DD);
      if (DistSlot<4)
      {
        DBits=0;
        Distance+=DistSlot;
      }
      else
      {
        DBits=DistSlot/2 - 1;
        Distance+=(2 | (DistSlot & 1)) << DBits;
      }
 
      if (DBits>0)
      {
        if (DBits>=4)
        {
          if (DBits>4)
          {
            Distance+=((Inp.getbits32()>>(36-DBits))<<4);
            Inp.addbits(DBits-4);
          }
          uint LowDist=DecodeNumber(Inp,&BlockTables.LDD);
          Distance+=LowDist;
        }
        else
        {
          Distance+=Inp.getbits()>>(16-DBits);
          Inp.addbits(DBits);
        }
      }
 
      if (Distance>0x100)
      {
        Length++;
        if (Distance>0x2000)
        {
          Length++;
          if (Distance>0x40000)
            Length++;
        }
      }
 
      InsertOldDist(Distance);
      LastLength=Length;
      if (Fragmented)
        FragWindow.CopyString(Length,Distance,UnpPtr,MaxWinMask);
      else
        CopyString(Length,Distance);
      continue;
    }
    if (MainSlot==256)
    {
      UnpackFilter Filter;
      if (!ReadFilter(Inp,Filter) || !AddFilter(Filter))
        break;
      continue;
    }
    if (MainSlot==257)
    {
      if (LastLength!=0)
        if (Fragmented)
          FragWindow.CopyString(LastLength,OldDist[0],UnpPtr,MaxWinMask);
        else
          CopyString(LastLength,OldDist[0]);
      continue;
    }
    if (MainSlot<262)
    {
      uint DistNum=MainSlot-258;
      uint Distance=OldDist[DistNum];
      for (uint I=DistNum;I>0;I--)
        OldDist[I]=OldDist[I-1];
      OldDist[0]=Distance;
 
      uint LengthSlot=DecodeNumber(Inp,&BlockTables.RD);
      uint Length=SlotToLength(Inp,LengthSlot);
      LastLength=Length;
      if (Fragmented)
        FragWindow.CopyString(Length,Distance,UnpPtr,MaxWinMask);
      else
        CopyString(Length,Distance);
      continue;
    }
  }
  UnpWriteBuf();
}
 
 
uint Unpack::ReadFilterData(BitInput &Inp)
{
  uint ByteCount=(Inp.fgetbits()>>14)+1;
  Inp.addbits(2);
 
  uint Data=0;
  for (uint I=0;I<ByteCount;I++)
  {
    Data+=(Inp.fgetbits()>>8)<<(I*8);
    Inp.addbits(8);
  }
  return Data;
}
 
 
bool Unpack::ReadFilter(BitInput &Inp,UnpackFilter &Filter)
{
  if (!Inp.ExternalBuffer && Inp.InAddr>ReadTop-16)
    if (!UnpReadBuf())
      return false;
 
  Filter.BlockStart=ReadFilterData(Inp);
  Filter.BlockLength=ReadFilterData(Inp);
  if (Filter.BlockLength>MAX_FILTER_BLOCK_SIZE)
    Filter.BlockLength=0;
 
  Filter.Type=Inp.fgetbits()>>13;
  Inp.faddbits(3);
 
  if (Filter.Type==FILTER_DELTA)
  {
    Filter.Channels=(Inp.fgetbits()>>11)+1;
    Inp.faddbits(5);
  }
 
  return true;
}
 
 
bool Unpack::AddFilter(UnpackFilter &Filter)
{
  if (Filters.Size()>=MAX_UNPACK_FILTERS)
  {
    UnpWriteBuf(); // Write data, apply and flush filters.
    if (Filters.Size()>=MAX_UNPACK_FILTERS)
      InitFilters(); // Still too many filters, prevent excessive memory use.
  }
 
  // If distance to filter start is that large that due to circular dictionary
  // mode now it points to old not written yet data, then we set 'NextWindow'
  // flag and process this filter only after processing that older data.
  Filter.NextWindow=WrPtr!=UnpPtr && ((WrPtr-UnpPtr)&MaxWinMask)<=Filter.BlockStart;
 
  Filter.BlockStart=uint((Filter.BlockStart+UnpPtr)&MaxWinMask);
  Filters.Push(Filter);
  return true;
}
 
 
bool Unpack::UnpReadBuf()
{
  int DataSize=ReadTop-Inp.InAddr; // Data left to process.
  if (DataSize<0)
    return false;
  BlockHeader.BlockSize-=Inp.InAddr-BlockHeader.BlockStart;
  if (Inp.InAddr>BitInput::MAX_SIZE/2)
  {
    // If we already processed more than half of buffer, let's move
    // remaining data into beginning to free more space for new data
    // and ensure that calling function does not cross the buffer border
    // even if we did not read anything here. Also it ensures that read size
    // is not less than CRYPT_BLOCK_SIZE, so we can align it without risk
    // to make it zero.
    if (DataSize>0)
      memmove(Inp.InBuf,Inp.InBuf+Inp.InAddr,DataSize);
    Inp.InAddr=0;
    ReadTop=DataSize;
  }
  else
    DataSize=ReadTop;
  int ReadCode=0;
  if (BitInput::MAX_SIZE!=DataSize)
    ReadCode=UnpIO->UnpRead(Inp.InBuf+DataSize,BitInput::MAX_SIZE-DataSize);
  if (ReadCode>0) // Can be also -1.
    ReadTop+=ReadCode;
  ReadBorder=ReadTop-30;
  BlockHeader.BlockStart=Inp.InAddr;
  if (BlockHeader.BlockSize!=-1) // '-1' means not defined yet.
  {
    // We may need to quit from main extraction loop and read new block header
    // and trees earlier than data in input buffer ends.
    ReadBorder=Min(ReadBorder,BlockHeader.BlockStart+BlockHeader.BlockSize-1);
  }
  return ReadCode!=-1;
}
 
 
void Unpack::UnpWriteBuf()
{
  size_t WrittenBorder=WrPtr;
  size_t FullWriteSize=(UnpPtr-WrittenBorder)&MaxWinMask;
  size_t WriteSizeLeft=FullWriteSize;
  bool NotAllFiltersProcessed=false;
  for (size_t I=0;I<Filters.Size();I++)
  {
    // Here we apply filters to data which we need to write.
    // We always copy data to another memory block before processing.
    // We cannot process them just in place in Window buffer, because
    // these data can be used for future string matches, so we must
    // preserve them in original form.
 
    UnpackFilter *flt=&Filters[I];
    if (flt->Type==FILTER_NONE)
      continue;
    if (flt->NextWindow)
    {
      // Here we skip filters which have block start in current data range
      // due to address wrap around in circular dictionary, but actually
      // belong to next dictionary block. If such filter start position
      // is included to current write range, then we reset 'NextWindow' flag.
      // In fact we can reset it even without such check, because current
      // implementation seems to guarantee 'NextWindow' flag reset after
      // buffer writing for all existing filters. But let's keep this check
      // just in case. Compressor guarantees that distance between
      // filter block start and filter storing position cannot exceed
      // the dictionary size. So if we covered the filter block start with
      // our write here, we can safely assume that filter is applicable
      // to next block on no further wrap arounds is possible.
      if (((flt->BlockStart-WrPtr)&MaxWinMask)<=FullWriteSize)
        flt->NextWindow=false;
      continue;
    }
    uint BlockStart=flt->BlockStart;
    uint BlockLength=flt->BlockLength;
    if (((BlockStart-WrittenBorder)&MaxWinMask)<WriteSizeLeft)
    {
      if (WrittenBorder!=BlockStart)
      {
        UnpWriteArea(WrittenBorder,BlockStart);
        WrittenBorder=BlockStart;
        WriteSizeLeft=(UnpPtr-WrittenBorder)&MaxWinMask;
      }
      if (BlockLength<=WriteSizeLeft)
      {
        if (BlockLength>0) // We set it to 0 also for invalid filters.
        {
          uint BlockEnd=(BlockStart+BlockLength)&MaxWinMask;
 
          FilterSrcMemory.Alloc(BlockLength);
          byte *Mem=&FilterSrcMemory[0];
          if (BlockStart<BlockEnd || BlockEnd==0)
          {
            if (Fragmented)
              FragWindow.CopyData(Mem,BlockStart,BlockLength);
            else
              memcpy(Mem,Window+BlockStart,BlockLength);
          }
          else
          {
            size_t FirstPartLength=size_t(MaxWinSize-BlockStart);
            if (Fragmented)
            {
              FragWindow.CopyData(Mem,BlockStart,FirstPartLength);
              FragWindow.CopyData(Mem+FirstPartLength,0,BlockEnd);
            }
            else
            {
              memcpy(Mem,Window+BlockStart,FirstPartLength);
              memcpy(Mem+FirstPartLength,Window,BlockEnd);
            }
          }
 
          byte *OutMem=ApplyFilter(Mem,BlockLength,flt);
 
          Filters[I].Type=FILTER_NONE;
 
          if (OutMem!=NULL)
            UnpIO->UnpWrite(OutMem,BlockLength);
 
          UnpSomeRead=true;
          WrittenFileSize+=BlockLength;
          WrittenBorder=BlockEnd;
          WriteSizeLeft=(UnpPtr-WrittenBorder)&MaxWinMask;
        }
      }
      else
      {
        // Current filter intersects the window write border, so we adjust
        // the window border to process this filter next time, not now.
        WrPtr=WrittenBorder;
 
        // Since Filter start position can only increase, we quit processing
        // all following filters for this data block and reset 'NextWindow'
        // flag for them.
        for (size_t J=I;J<Filters.Size();J++)
        {
          UnpackFilter *flt=&Filters[J];
          if (flt->Type!=FILTER_NONE)
            flt->NextWindow=false;
        }
 
        // Do not write data left after current filter now.
        NotAllFiltersProcessed=true;
        break;
      }
    }
  }
 
  // Remove processed filters from queue.
  size_t EmptyCount=0;
  for (size_t I=0;I<Filters.Size();I++)
  {
    if (EmptyCount>0)
      Filters[I-EmptyCount]=Filters[I];
    if (Filters[I].Type==FILTER_NONE)
      EmptyCount++;
  }
  if (EmptyCount>0)
    Filters.Alloc(Filters.Size()-EmptyCount);
 
  if (!NotAllFiltersProcessed) // Only if all filters are processed.
  {
    // Write data left after last filter.
    UnpWriteArea(WrittenBorder,UnpPtr);
    WrPtr=UnpPtr;
  }
 
  // We prefer to write data in blocks not exceeding UNPACK_MAX_WRITE
  // instead of potentially huge MaxWinSize blocks. It also allows us
  // to keep the size of Filters array reasonable.
  WriteBorder=(UnpPtr+Min(MaxWinSize,UNPACK_MAX_WRITE))&MaxWinMask;
 
  // Choose the nearest among WriteBorder and WrPtr actual written border.
  // If border is equal to UnpPtr, it means that we have MaxWinSize data ahead.
  if (WriteBorder==UnpPtr || 
      WrPtr!=UnpPtr && ((WrPtr-UnpPtr)&MaxWinMask)<((WriteBorder-UnpPtr)&MaxWinMask))
    WriteBorder=WrPtr;
}
 
 
byte* Unpack::ApplyFilter(byte *Data,uint DataSize,UnpackFilter *Flt)
{
  byte *SrcData=Data;
  switch(Flt->Type)
  {
    case FILTER_E8:
    case FILTER_E8E9:
      {
        uint FileOffset=(uint)WrittenFileSize;
 
        const uint FileSize=0x1000000;
        byte CmpByte2=Flt->Type==FILTER_E8E9 ? 0xe9:0xe8;
        // DataSize is unsigned, so we use "CurPos+4" and not "DataSize-4"
        // to avoid overflow for DataSize<4.
        for (uint CurPos=0;CurPos+4<DataSize;)
        {
          byte CurByte=*(Data++);
          CurPos++;
          if (CurByte==0xe8 || CurByte==CmpByte2)
          {
            uint Offset=(CurPos+FileOffset)%FileSize;
            uint Addr=RawGet4(Data);
 
            // We check 0x80000000 bit instead of '< 0' comparison
            // not assuming int32 presence or uint size and endianness.
            if ((Addr & 0x80000000)!=0)              // Addr<0
            {
              if (((Addr+Offset) & 0x80000000)==0)   // Addr+Offset>=0
                RawPut4(Addr+FileSize,Data);
            }
            else
              if (((Addr-FileSize) & 0x80000000)!=0) // Addr<FileSize
                RawPut4(Addr-Offset,Data);
 
            Data+=4;
            CurPos+=4;
          }
        }
      }
      return SrcData;
    case FILTER_ARM:
      // 2019-11-15: we turned off ARM filter by default when compressing,
      // mostly because it is inefficient for modern 64 bit ARM binaries.
      // It was turned on by default in 5.0 - 5.80b3 , so we still need it
      // here for compatibility with some of previously created archives.
      {
        uint FileOffset=(uint)WrittenFileSize;
        // DataSize is unsigned, so we use "CurPos+3" and not "DataSize-3"
        // to avoid overflow for DataSize<3.
        for (uint CurPos=0;CurPos+3<DataSize;CurPos+=4)
        {
          byte *D=Data+CurPos;
          if (D[3]==0xeb) // BL command with '1110' (Always) condition.
          {
            uint Offset=D[0]+uint(D[1])*0x100+uint(D[2])*0x10000;
            Offset-=(FileOffset+CurPos)/4;
            D[0]=(byte)Offset;
            D[1]=(byte)(Offset>>8);
            D[2]=(byte)(Offset>>16);
          }
        }
      }
      return SrcData;
    case FILTER_DELTA:
      {
        // Unlike RAR3, we do not need to reject excessive channel
        // values here, since RAR5 uses only 5 bits to store channel.
        uint Channels=Flt->Channels,SrcPos=0;
 
        FilterDstMemory.Alloc(DataSize);
        byte *DstData=&FilterDstMemory[0];
 
        // Bytes from same channels are grouped to continual data blocks,
        // so we need to place them back to their interleaving positions.
        for (uint CurChannel=0;CurChannel<Channels;CurChannel++)
        {
          byte PrevByte=0;
          for (uint DestPos=CurChannel;DestPos<DataSize;DestPos+=Channels)
            DstData[DestPos]=(PrevByte-=Data[SrcPos++]);
        }
        return DstData;
      }
 
  }
  return NULL;
}
 
 
void Unpack::UnpWriteArea(size_t StartPtr,size_t EndPtr)
{
  if (EndPtr!=StartPtr)
    UnpSomeRead=true;
  if (EndPtr<StartPtr)
    UnpAllBuf=true;
 
  if (Fragmented)
  {
    size_t SizeToWrite=(EndPtr-StartPtr) & MaxWinMask;
    while (SizeToWrite>0)
    {
      size_t BlockSize=FragWindow.GetBlockSize(StartPtr,SizeToWrite);
      UnpWriteData(&FragWindow[StartPtr],BlockSize);
      SizeToWrite-=BlockSize;
      StartPtr=(StartPtr+BlockSize) & MaxWinMask;
    }
  }
  else
    if (EndPtr<StartPtr)
    {
      UnpWriteData(Window+StartPtr,MaxWinSize-StartPtr);
      UnpWriteData(Window,EndPtr);
    }
    else
      UnpWriteData(Window+StartPtr,EndPtr-StartPtr);
}
 
 
void Unpack::UnpWriteData(byte *Data,size_t Size)
{
  if (WrittenFileSize>=DestUnpSize)
    return;
  size_t WriteSize=Size;
  int64 LeftToWrite=DestUnpSize-WrittenFileSize;
  if ((int64)WriteSize>LeftToWrite)
    WriteSize=(size_t)LeftToWrite;
  UnpIO->UnpWrite(Data,WriteSize);
  WrittenFileSize+=Size;
}
 
 
void Unpack::UnpInitData50(bool Solid)
{
  if (!Solid)
    TablesRead5=false;
}
 
 
bool Unpack::ReadBlockHeader(BitInput &Inp,UnpackBlockHeader &Header)
{
  Header.HeaderSize=0;
 
  if (!Inp.ExternalBuffer && Inp.InAddr>ReadTop-7)
    if (!UnpReadBuf())
      return false;
  Inp.faddbits((8-Inp.InBit)&7);
 
  byte BlockFlags=Inp.fgetbits()>>8;
  Inp.faddbits(8);
  uint ByteCount=((BlockFlags>>3)&3)+1; // Block size byte count.
 
  if (ByteCount==4)
    return false;
 
  Header.HeaderSize=2+ByteCount;
 
  Header.BlockBitSize=(BlockFlags&7)+1;
 
  byte SavedCheckSum=Inp.fgetbits()>>8;
  Inp.faddbits(8);
 
  int BlockSize=0;
  for (uint I=0;I<ByteCount;I++)
  {
    BlockSize+=(Inp.fgetbits()>>8)<<(I*8);
    Inp.addbits(8);
  }
 
  Header.BlockSize=BlockSize;
  byte CheckSum=byte(0x5a^BlockFlags^BlockSize^(BlockSize>>8)^(BlockSize>>16));
  if (CheckSum!=SavedCheckSum)
    return false;
 
  Header.BlockStart=Inp.InAddr;
  ReadBorder=Min(ReadBorder,Header.BlockStart+Header.BlockSize-1);
 
  Header.LastBlockInFile=(BlockFlags & 0x40)!=0;
  Header.TablePresent=(BlockFlags & 0x80)!=0;
  return true;
}
 
 
bool Unpack::ReadTables(BitInput &Inp,UnpackBlockHeader &Header,UnpackBlockTables &Tables)
{
  if (!Header.TablePresent)
    return true;
 
  if (!Inp.ExternalBuffer && Inp.InAddr>ReadTop-25)
    if (!UnpReadBuf())
      return false;
 
  byte BitLength[BC];
  for (uint I=0;I<BC;I++)
  {
    uint Length=(byte)(Inp.fgetbits() >> 12);
    Inp.faddbits(4);
    if (Length==15)
    {
      uint ZeroCount=(byte)(Inp.fgetbits() >> 12);
      Inp.faddbits(4);
      if (ZeroCount==0)
        BitLength[I]=15;
      else
      {
        ZeroCount+=2;
        while (ZeroCount-- > 0 && I<ASIZE(BitLength))
          BitLength[I++]=0;
        I--;
      }
    }
    else
      BitLength[I]=Length;
  }
 
  MakeDecodeTables(BitLength,&Tables.BD,BC);
 
  byte Table[HUFF_TABLE_SIZE];
  const uint TableSize=HUFF_TABLE_SIZE;
  for (uint I=0;I<TableSize;)
  {
    if (!Inp.ExternalBuffer && Inp.InAddr>ReadTop-5)
      if (!UnpReadBuf())
        return false;
    uint Number=DecodeNumber(Inp,&Tables.BD);
    if (Number<16)
    {
      Table[I]=Number;
      I++;
    }
    else
      if (Number<18)
      {
        uint N;
        if (Number==16)
        {
          N=(Inp.fgetbits() >> 13)+3;
          Inp.faddbits(3);
        }
        else
        {
          N=(Inp.fgetbits() >> 9)+11;
          Inp.faddbits(7);
        }
        if (I==0)
        {
          // We cannot have "repeat previous" code at the first position.
          // Multiple such codes would shift Inp position without changing I,
          // which can lead to reading beyond of Inp boundary in mutithreading
          // mode, where Inp.ExternalBuffer disables bounds check and we just
          // reserve a lot of buffer space to not need such check normally.
          return false;
        }
        else
          while (N-- > 0 && I<TableSize)
          {
            Table[I]=Table[I-1];
            I++;
          }
      }
      else
      {
        uint N;
        if (Number==18)
        {
          N=(Inp.fgetbits() >> 13)+3;
          Inp.faddbits(3);
        }
        else
        {
          N=(Inp.fgetbits() >> 9)+11;
          Inp.faddbits(7);
        }
        while (N-- > 0 && I<TableSize)
          Table[I++]=0;
      }
  }
  TablesRead5=true;
  if (!Inp.ExternalBuffer && Inp.InAddr>ReadTop)
    return false;
  MakeDecodeTables(&Table[0],&Tables.LD,NC);
  MakeDecodeTables(&Table[NC],&Tables.DD,DC);
  MakeDecodeTables(&Table[NC+DC],&Tables.LDD,LDC);
  MakeDecodeTables(&Table[NC+DC+LDC],&Tables.RD,RC);
  return true;
}
 
 
void Unpack::InitFilters()
{
  Filters.SoftReset();
}

V547 Expression 'MainSlot < 262' is always true.

V648 Priority of the '&&' operation is higher than that of the '||' operation.

V1051 Consider checking for misprints. It's possible that the 'BlockHeader.BlockStart' should be checked here.

V688 The 'Inp' function argument possesses the same name as one of the class members, which can result in a confusion.

V688 The 'Inp' function argument possesses the same name as one of the class members, which can result in a confusion.

V688 The 'Inp' function argument possesses the same name as one of the class members, which can result in a confusion.

V688 The 'Inp' function argument possesses the same name as one of the class members, which can result in a confusion.